A novel kind of nanofibrillated cellulose (NFC) reinforced polyvinyl butyral (PVB) nanofibers-containing bilayer hydrogel system was successfully fabricated via the combination of a one-step, in-situ, free radical polymerization and electrospinning. The hydrogel owned high mechanical strength, thermoresponsive, and near infrared bending/unbending properties. The cross-linking density of hydrogels enhanced along with the increase of NFC content. The addition of NFC and PVB nanofibers presented tiny influence on the variation of chemical bond and volume phase transition temperature. The combination between NFC and PVB nanofibers enhanced the mechanical strength and decreased the strain value, which built the base for high bonding strength of two layers and efficient thermoresponsive and near infrared responses. With the increase of NFC content, the bending degree became smaller. The bilayer hydrogel dimensions affected the deformation degree. Bilayer hydrogels with different NFC content own different deformation abilities, which can be designed as different parts of soft actuators and provide superior performance to satisfy various practical application demands.
Keywords: bilayer hydrogel; electrospinning; multiple responses; nanofibrillated cellulose.