Flame Retardancy of Sorbitol Based Bioepoxy via Combined Solid and Gas Phase Action

Polymers (Basel). 2016 Aug 30;8(9):322. doi: 10.3390/polym8090322.

Abstract

Flame-retarded bioepoxy resins were prepared with the application of commercially available sorbitol polyglycidyl ether (SPE). The additive-type flame retardancy of the cycloaliphatic amine-cured SPE was investigated. Three-percent phosphorus (P)-containing samples were prepared with the application of the liquid resorcinol bis(diphenyl phosphate) (RDP), the solid ammonium polyphosphate (APP), and by combining them. Synergistic effect was found between the inorganic APP and the organophosphorus RDP, when applied in combination: formulations applying RDP or APP alone showed increased limiting oxygen index (LOI) values, however, their UL-94 standard ratings remained HB. When the same amount of P originated from the two additives, V-0, self-extinguishing rating and LOI value of 34% (v/v) was reached. By the combined approach the heat release rate of SPE could be lowered by approximately 60%. The assumed balanced solid and gas phase mechanism was confirmed by thermogravimetric analysis, Fourier transform infrared spectrometry (FTIR) analysis (of the gases formed during laser pyrolysis), attenuated total reflection-infrared spectrometry (ATR-IR) analysis (of the charred residues), as well as by mechanical testing (of the char obtained after combustion).

Keywords: TGA; bioepoxy; laser pyrolysis-FTIR coupled method; phosphorous additive FR; solid and gas phase mechanism.