This work demonstrates that engineering a three-dimensional photonic crystal (3DPC) structure in a highly flexible gel is a potential method to achieve flexible tactile artificial photonic skin (p-skin) for future visible-light communication (VLC). We investigated the photonic output modes of 3DPC-coated gel-based pressure sensors and explored their ability to sense low pressures (<10 kPa) through reflection. Such sensors with high sensitivity, fast response, and adjustable detection range can be fabricated in arrays of dots covering large, complex/uneven surfaces and are promising in the development of stimuli-responsive soft materials for future artificial intelligence, health monitoring, and photonic communication systems.
Keywords: artificial photonic skin (p-skin); gel; photonic crystal; reflection; tactile sensing.