High-throughput tandem mass spectrometry has enabled the detection and identification of over 75% of all proteins predicted to result in translated gene products in the human genome. In fact, the galloping rate of data acquisition and sharing of mass spectrometry data has led to the current availability of many tens of terabytes of public data in thousands of human data sets. The systematic reanalysis of these public data sets has been used to build a community-scale spectral library of 2.1 million precursors for over 1 million unique sequences from over 19,000 proteins (including spectra of synthetic peptides). However, it has remained challenging to find and inspect spectra of peptides covering functional protein regions or matching novel proteins. ProteinExplorer addresses these challenges with an intuitive interface mapping tens of millions of identifications to functional sites on nearly all human proteins while maintaining provenance for every identification back to the original data set and data file. Additionally, ProteinExplorer facilitates the selection and inspection of HPP-compliant peptides whose spectra can be matched to spectra of synthetic peptides and already includes HPP-compliant evidence for 107 missing (PE2, PE3, and PE4) and 23 dubious (PE5) proteins. Finally, ProteinExplorer allows users to rate spectra and to contribute to a community library of peptides entitled PrEdict (Protein Existance dictionary) mapping to novel proteins but whose preliminary identities have not yet been fully established with community-scale false discovery rates and synthetic peptide spectra. ProteinExplorer can be now be accessed at https://massive.ucsd.edu/ProteoSAFe/protein_explorer_splash.jsp .
Keywords: big data; community-scale science; computational analysis; human proteome; missing proteins; peptide-spectrum match; proteomics; spectral library; tandem mass spectrometry; user submission.