Plasma protein adsorption on Fe3O4-PEG nanoparticles activates the complement system and induces an inflammatory response

Int J Nanomedicine. 2019 Mar 25:14:2055-2067. doi: 10.2147/IJN.S192214. eCollection 2019.

Abstract

Background: Understanding of iron oxide nanoparticles (IONP) interaction with the body milieu is crucial to guarantee their efficiency and biocompatibility in nanomedicine. Polymer coating to IONP, with polyethyleneglycol (PEG) and polyvinylpyrrolidone (PVP), is an accepted strategy to prevent toxicity and excessive protein binding.

Aim: The aim of this study was to investigate the feature of IONP adsorption of complement proteins, their activation and consequent inflammatory response as a strategy to further elucidate their biocompatibility.

Methods: Three types of IONP with different surface characteristics were used: bare (IONP-bare), coated with PVP (IONP-PVP) and PEG-coated (IONP-PEG). IONPs were incubated with human plasma and adsorbed proteins were identified. BALB/c mice were intravenously exposed to IONP to evaluate complement activation and proinflammatory response.

Results: Protein corona fingerprinting showed that PEG surface around IONP promoted a selective adsorption of complement recognition molecules which would be responsible for the complement system activation. Furthermore, IONP-PEG activated in vitro, the complement system and induced a substantial increment of C3a and C4a anaphylatoxins while IONP-bare and IONP-PVP did not. In vivo IONP-PEG induced an increment in complement activation markers (C5a and C5b-9), and proinflammatory cytokines (IL-1β, IL-6, TNF-α).

Conclusion: The engineering of nanoparticles must incorporate the association between complement proteins and nanomedicines, which will regulate the immunostimulatory effects through a selective adsorption of plasma proteins and will enable a safer application of IONP in human therapy.

Keywords: complement; inflammatory response; iron oxide nanoparticles; protein corona.

MeSH terms

  • Adsorption
  • Anaphylatoxins / metabolism
  • Animals
  • Blood Proteins / metabolism*
  • Complement Activation
  • Complement System Proteins / metabolism*
  • Ferric Compounds / chemistry*
  • Humans
  • Inflammation / pathology*
  • Interleukin-1beta / metabolism
  • Male
  • Mice, Inbred BALB C
  • Nanoparticles / chemistry*
  • Nanoparticles / ultrastructure
  • Polyethylene Glycols / chemistry*
  • Povidone / chemistry
  • Protein Corona / metabolism
  • Tumor Necrosis Factor-alpha / metabolism

Substances

  • Anaphylatoxins
  • Blood Proteins
  • Ferric Compounds
  • Interleukin-1beta
  • Protein Corona
  • Tumor Necrosis Factor-alpha
  • ferric oxide
  • Polyethylene Glycols
  • Complement System Proteins
  • Povidone