Biodegradation of recalcitrant organic compounds in microbial fuel cell (MFC) is limited, due to its strong electron affinity and persisted in anaerobic condition. In this study, Pseudomonas monteilii LZU-3 degraded p-nitrophenol (PNP) and generated current at 100 mg L-1 of PNP in anode MFC with the addition of oxygen. The highest PNP degradation was 4, 37.75, and 99.89% in anaerobic, aerobic, and aerated anode of MFC respectively, at 7 h. The maximum voltage generation in aerated anode was 183 mV, which was comparatively higher than aerobic (150 mV) and anaerobic (68 mV). The qRT-PCR results confirmed that the oxygenase genes in strain LZU-3 were up-regulated from 17.51 to 39.39-fold at 1.6-4.5 mg L-1 of oxygen concentrations resulted in PNP degradation in anode MFC. This study demonstrated that supplementation of oxygen into the anode MFC might be a potential approach for biodegradation of recalcitrant compounds and electricity generation.
Keywords: Aerated anode; Biodegradation; Dissolved oxygen; Microbial fuel cell; p-Nitrophenol.
Copyright © 2019 Elsevier Ltd. All rights reserved.