A clear understanding of the mechanisms that regulate the alveolar epithelium's barrier is critical to develop new therapeutic strategies to mitigate lung injury. The HER2/HER3 receptor tyrosine kinase complex plays a central role in maintaining the alveolar-capillary barrier. This receptor complex is activated by its ligand, neuregulin-1 (NRG-1). Interleukin-6 (IL-6) is also known to induce HER2 signaling through HER2 transphosphorylation by the IL-6 receptor (IL-6R) complex (1). Due to this interaction, we hypothesized that NRG-1 and IL-6 cooperatively interacted to activate the HER2/HER3 complex. Studies were performed in cultured pulmonary epithelial cells measuring the HER2/IL-6/IL-6R/GP130 interaction and receptor activation by western blotting and confocal microscopy, IL-6 production by ELISA, and IL-6 inhibition using specific antibodies, small molecule inhibitors and shRNA. We found that IL-6 was required for NRG-1 induced activation of HER2 in pulmonary epithelial cells. IL-6 inhibition led to a decrease in NRG-1 induced HER2 activation. The IL-6R and GP130, a subunit of the IL-6R complex, were physically associated with HER2 and were required for NRG-1 induced HER2 activation. Inhibition of GP130, the β-subunit of the IL-6 receptor decreased NRG-1 induced HER2 activation lower than control by 38% Finally, HER2 activation increased IL-6 secretion more than two-fold over resting cells (526 ± 131 vs 231 ± 39.7 pg/ml), and inhibition of HER2 gene expression decreased basal IL-6 secretion over 80% (89 + 4.6 vs 1.3 + 0.8 pg/ml). These findings identify a requirement for IL-6 and the IL-6R complex to allow NRG-1 mediated HER2 activation, and a HER2 driven IL-6 production feedback loop.
Keywords: HER2; Interleukin-6; Interleukin-6 receptor; Neuregulin-1; Signaling; Tyrosine kinase.
Copyright © 2019 Elsevier Inc. All rights reserved.