L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction

Nat Commun. 2019 Apr 18;10(1):1807. doi: 10.1038/s41467-019-09837-z.

Abstract

L-amino acid transporters (LATs) play key roles in human physiology and are implicated in several human pathologies. LATs are asymmetric amino acid exchangers where the low apparent affinity cytoplasmic side controls the exchange of substrates with high apparent affinity on the extracellular side. Here, we report the crystal structures of an LAT, the bacterial alanine-serine-cysteine exchanger (BasC), in a non-occluded inward-facing conformation in both apo and substrate-bound states. We crystallized BasC in complex with a nanobody, which blocks the transporter from the intracellular side, thus unveiling the sidedness of the substrate interaction of BasC. Two conserved residues in human LATs, Tyr 236 and Lys 154, are located in equivalent positions to the Na1 and Na2 sites of sodium-dependent APC superfamily transporters. Functional studies and molecular dynamics (MD) calculations reveal that these residues are key for the asymmetric substrate interaction of BasC and in the homologous human transporter Asc-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Transport System y+ / chemistry*
  • Amino Acid Transport System y+ / genetics
  • Amino Acid Transport System y+ / metabolism
  • Aminoisobutyric Acids / chemistry*
  • Aminoisobutyric Acids / metabolism
  • Animals
  • Bacterial Proteins / chemistry*
  • Bacterial Proteins / metabolism
  • Binding Sites
  • Camelids, New World
  • Crystallography, X-Ray
  • HeLa Cells
  • Humans
  • Molecular Dynamics Simulation
  • Mutagenesis, Site-Directed
  • Protein Binding
  • Single-Chain Antibodies / chemistry
  • Substrate Specificity

Substances

  • Amino Acid Transport System y+
  • Aminoisobutyric Acids
  • Bacterial Proteins
  • SLC7A10 protein, human
  • Single-Chain Antibodies
  • 2-aminoisobutyric acid