Passive leg movement (PLM)-induced hyperemia is used to assess the function of the vascular endothelium. This study sought to determine the impact of movement speed and range of motion (ROM) on the hyperemic response to PLM and determine if the currently recommended protocol of moving the leg through a 90° ROM at 180°/sec provides a peak hyperemic response to PLM. 11 healthy adults underwent multiple bouts of PLM, in which either movement speed (60-240°/sec) or ROM (30-120° knee flexion) were varied. Femoral artery blood flow (Doppler Ultrasound) and mean arterial pressure (MAP; photoplethysmography) were measured throughout. Movement speed generally exhibited positive linear relationships with the hyperemic response to PLM, eliciting ~15-20% increase in hyperemia and conductance for each 30°/sec increase in speed (P < 0.05). However, increasing the movement speed above 180°/sec was physically difficult and seemingly impractical to implement. ROM exhibited curvilinear relationships (P<0.05) with hyperemia and conductance, which peaked at 90°, such that a 30° increase or decrease in ROM from 90° resulted in a 10-40% attenuation (P < 0.05) in the hyperemic response. Alterations in the balance of antegrade and retrograde flow appear to play a role in this attenuation. Movement speed and ROM have a profound impact on PLM-induced hyperemia. When using PLM to assess vascular endothelial function, it is recommended to perform the test at the traditional 180°/sec with 90° ROM, which offers a near peak hyperemic response, while maintaining test feasibility.
Keywords: Endothelial function; exercise blood flow; movement speed; passive leg movement; range of motion.
© 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.