Microplastics are widely distributed in freshwater environments. At present, most of the studies on the toxicity of microplastics are concentrated on aquatic feeding animals, but relatively few have addressed freshwater algae. This study investigated the effect of microplastics (polypropylene (PP) and polyvinyl chloride (PVC)) exposure on the photosynthetic system of freshwater algae over the logarithmic growth period. The results showed that both PVC and PP had a negative effect on chlorophyll a concentrations of Chlorella (C.) pyrenoidosa and Microcystis (M.) flos-aquae; among them, when the concentration of PVC exceeded 250 mg/L, compared with the control group, the chlorophyll a content of C. pyrenoidosa was reduced by 55.23%. For photosynthetic activity, higher concentrations of PVC and PP can induce lower values of Fv/Fm, Fv/F0, and Fv'/Fm', suggesting a larger impact in algae. However, algae were able to adjust, with increased values of Fv/Fm, Fv/F0, and Fv'/Fm'. This dose-negative effect phenomenon also exists in the study of the rapid light-response curves. In addition, comparing the two microplastics, we could see that PVC greatly inhibits the photosynthesis system of freshwater algae. Our study confirmed that microplastics can affect algae growth under certain concentrations, which provides evidence for understanding the risks of microplastics.
Keywords: Chlorophyll a; Inhibition; Microplastics; Photosynthetic system; Phytoplankton.
Copyright © 2019 Elsevier B.V. All rights reserved.