Siponimod (BAF312) Treatment Reduces Brain Infiltration but Not Lesion Volume in Middle-Aged Mice in Experimental Stroke

Stroke. 2019 May;50(5):1224-1231. doi: 10.1161/STROKEAHA.118.023667.

Abstract

Background and Purpose- The contribution of neuroinflammation and, in particular, the infiltration of the brain by lymphocytes is increasingly recognized as a substantial pathophysiological mechanism after stroke. The interaction of lymphocytes with endothelial cells and platelets, termed thromboinflammation, fosters microvascular dysfunction and secondary infarct growth. Siponimod is an S1PR (sphingosine-1-phosphate receptor) modulator, which blocks the egress of lymphocytes from lymphoid organs and has demonstrated beneficial effects in multiple sclerosis treatment. We investigated the effect of treatment with siponimod on stroke outcome in a mouse model of cerebral ischemia. Methods- Transient middle cerebral artery occlusion was induced in middle-aged wild-type mice. Animals were either treated with siponimod (3 mg/kg; intraperitoneal) or vehicle for 6 days. Stroke outcome was assessed by magnetic resonance imaging (spleen volume: prestroke, day 3, and day 7; infarct volume: days 1, 3, and 7) and behavioral tests (prestroke, day 2, and day 6). Immune cells of the peripheral blood and brain-infiltrating cells ipsilateral and contralateral were analyzed by VETScan and by flow cytometry. Results- Siponimod significantly induced lymphopenia on day 7 after transient middle cerebral artery occlusion and reduced T-lymphocyte accumulation in the central nervous system. No effect was detected for lesion size. Conclusions- For siponimod administered at 3 mg/kg in transient middle cerebral artery occlusion mouse model, our findings do not provide preclinical evidence for the use of S1PR1/5 modulators as neuroprotectant in stroke therapy.

Keywords: animals; infarction, middle cerebral artery; mice; spleen; stroke.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Age Factors
  • Animals
  • Azetidines / pharmacology
  • Azetidines / therapeutic use*
  • Benzyl Compounds / pharmacology
  • Benzyl Compounds / therapeutic use*
  • Brain / diagnostic imaging
  • Brain / drug effects*
  • Brain / metabolism
  • Brain Ischemia / diagnostic imaging
  • Brain Ischemia / drug therapy*
  • Brain Ischemia / metabolism
  • Disease Models, Animal*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Sphingosine 1 Phosphate Receptor Modulators / pharmacology
  • Sphingosine 1 Phosphate Receptor Modulators / therapeutic use*
  • Stroke / diagnostic imaging
  • Stroke / drug therapy*
  • Stroke / metabolism
  • T-Lymphocytes / metabolism
  • Treatment Outcome

Substances

  • Azetidines
  • Benzyl Compounds
  • Sphingosine 1 Phosphate Receptor Modulators
  • siponimod