A novel high-performance carbon foam (CF) was fabricated through the addition of phenolic resin (PR) into a coal tar pitch (CTP) based precursor. The effects of mass fraction of a PR additive on the crystalline structures, morphologies, compressive strength (σ) and thermal conductivity (λ) of resultant CF material were investigated systematically. Characterization showed a strong dependence of CF's performance from the composition and optical texture of the precursor, which were mainly depending on the polycondensation and polymerization reactions between PR and raw CTP. Comparing with the strength of pristine CF at 6.5 MPa, the σ of mCF-9 (13.1 MPa) was remarkably enhanced by 100.1%. However, the λ of mCF-9 substantially reduced to 0.9 m-1K-1 compared with 18.2 W m-1K-1 of pristine CF. Thus, this modification strategy to produce microporous CF materials from raw CTP provides a new protocol for the fabrication of high-performance carbon based materials.
Keywords: carbon foam; mechanical properties; modification; phenolic resin; pyrolysis.