Model states for a class of chiral topological order interfaces

Nat Commun. 2019 Apr 23;10(1):1861. doi: 10.1038/s41467-019-09168-z.

Abstract

Interfaces between topologically distinct phases of matter reveal a remarkably rich phenomenology. To go beyond effective field theories, we study the prototypical example of such an interface between two Abelian states, namely the Laughlin and Halperin states. Using matrix product states, we propose a family of model wavefunctions for the whole system including both bulks and the interface. We show through extensive numerical studies that it unveils both the universal properties of the system, such as the central charge of the gapless interface mode and its microscopic features. It also captures the low energy physics of experimentally relevant Hamiltonians. Our approach can be generalized to other phases described by tensor networks.

Publication types

  • Research Support, Non-U.S. Gov't