Iron-oxide-based contrast agents for magnetic resonance imaging (MRI) had been clinically approved in the United States and Europe, yet most of these nanoparticle products were discontinued owing to failures to meet rigorous clinical requirements. Significant advances have been made in the synthesis of magnetic nanoparticles and their biomedical applications, but several major challenges remain for their clinical translation, in particular large-scale and reproducible synthesis, systematic toxicity assessment, and their preclinical evaluation in MRI of large animals. Here, we report the results of a toxicity study of iron oxide nanoclusters of uniform size in large animal models, including beagle dogs and the more clinically relevant macaques. We also show that iron oxide nanoclusters can be used as T 1 MRI contrast agents for high-resolution magnetic resonance angiography in beagle dogs and macaques, and that dynamic MRI enables the detection of cerebral ischaemia in these large animals. Iron oxide nanoclusters show clinical potential as next-generation MRI contrast agents.