This research aimed to investigate the degradation of natural organic matter responsible for the formation of trihalomethane (THM), haloacetic acid (HAA) and haloacetonitrile (HAN) during ultraviolet (UV) photolysis and a co-exposure of UV with chlorine (UV/chlorine) and chloramine (UV/chloramine). Low pressure UV (LPUV) and vacuum UV (VUV) lamps were used for photolysis. VUV and LPUV irradiation changed aromatic/unsaturated structures to aliphatic ones, resulting in decreased THM and HAN formation. Following irradiation for 60 min, LPUV decreased THM and HAN by 16% ± 2% and 20% ± 6%, respectively. VUV decreased THM and HAN formation by 23% ± 3% and 20% ± 8%, respectively. HAA formation increased following photolysis. UV/chlorine treatment decreased THM, HAA and HAN. Higher chlorine doses had an inversely proportional relationship with THM and HAN formation. A chlorine dose of 4 mg·L-1 led to the greatest reductions, corresponding to 42% ± 2%, 10% ± 10% and 18% ± 6% for THM, HAA and HAN, respectively. UV/chloramine decreased the formation of THM more than UV/chlorine. With a chloramine dose of 4 mg·L-1, THM, HAA and HAN formation decreased by 74% ± 10%, 10% ± 10% and 11% ± 10%, respectively. This study showed the potential use of UV/chlor(am)ine for controlling the formation of THM, HAA and HAN.