We tested a biomaterial-based approach to preserve the critical phrenic motor circuitry that controls diaphragm function by locally delivering minocycline hydrochloride (MH) following cervical spinal cord injury (SCI). MH is a clinically-available antibiotic and anti-inflammatory drug that targets a broad range of secondary injury mechanisms via its anti-inflammatory, anti-oxidant and anti-apoptotic properties. However, MH is only neuroprotective at high concentrations that cannot be achieved by systemic administration, which limits its clinical efficacy. We have developed a hydrogel-based MH delivery system that can be injected into the intrathecal space for local delivery of high concentrations of MH, without damaging spinal cord tissue. Implantation of MH hydrogel after unilateral level-C4/5 contusion SCI robustly preserved diaphragm function, as assessed by in vivo recordings of compound muscle action potential (CMAP) and electromyography (EMG) amplitudes. MH hydrogel also decreased lesion size and degeneration of cervical motor neuron somata, demonstrating its central neuroprotective effects within the injured cervical spinal cord. Furthermore, MH hydrogel significantly preserved diaphragm innervation by the axons of phrenic motor neurons (PhMNs), as assessed by both detailed neuromuscular junction (NMJ) morphological analysis and retrograde PhMN labeling from the diaphragm using cholera toxin B (CTB). In conclusion, our findings demonstrate that local MH hydrogel delivery to the injured cervical spinal cord is effective in preserving respiratory function after SCI by protecting the important neural circuitry that controls diaphragm activation.
Keywords: Biomaterials; Cervical; Contusion; Diaphragm; Drug delivery; Hydrogel; Minocycline; Phrenic motor neuron; Respiratory; Spinal cord injury.
Copyright © 2019 Elsevier Inc. All rights reserved.