Water stress is a worldwide agricultural challenge that limits crop growth and quality. Chemical compounds that promote tolerance to water stress, such as omeprazole showed recently promising results. The present study investigates the effect of weekly drenching applications of 0, 10, 50, 100, or 200 μM omeprazole on Mentha piperita (peppermint) subjected to water stress by watering at 100%, 70%, and 50% of container substrate capacity for 7 weeks in an experiment that spanned two seasons. Peppermint that received higher doses of omeprazole showed increased plant height, leaf number, leaf area, and dry weight under normal and water stress conditions. The amounts of chlorophyll and proline in the leaves as well as gas exchange increased in omeprazole-treated plants relative to the control plants. Omeprazole treatment also resulted in increased activity of the enzymes catalase and ascorbate peroxidase, reduced accumulation of the reactive oxygen species hydrogen peroxide, increase in the essential oil ratio, and improvement in essential oil composition. Omeprazole-treated plants showed higher ratios of menthol and menthone composition relative to the control plants. The changes in essential oil composition were associated with increased expression of genes associated with the menthol biosynthesis pathway. These findings indicate that omeprazole can ameliorate water stress in peppermint by increasing vegetative and root growth; increasing chlorophyll amount, photosynthetic rate, and gas exchange; reducing water loss by boosting leaf water potential and relative water content; increasing proline content; and modulating the gene expression of secondary metabolites.
Keywords: Antioxidants; Gene expression; Menthol biosynthesis; Omeprazole; Peppermint; Water stress.
Copyright © 2019 Elsevier Masson SAS. All rights reserved.