EPO enhances the protective effects of MSCs in experimental hyperoxia-induced neonatal mice by promoting angiogenesis

Aging (Albany NY). 2019 Apr 29;11(8):2477-2487. doi: 10.18632/aging.101937.

Abstract

Bronchopulmonary dysplasia (BPD) is the most common type of chronic lung disease in infancy; however, there is no effective treatment for it. In the present study, a neonatal mouse BPD model was established by continuous exposure to high oxygen (HO) levels. Mice were divided randomly into 5 groups: control, BPD, EPO, MSCs, and MSCs+EPO. At 2 weeks post-treatment, vessel density and the expression levels of endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1), and its receptor C-X-C chemokine receptor type 4 (CXCR4) were significantly increased in the MSC+EPO group compared with the EPO or MSCs group alone; moreover, EPO significantly enhanced MSCs proliferation, migration, and anti-apoptosis ability in vitro. Furthermore, the MSCs could differentiate into cells that were positive for the type II alveolar epithelial cell (AECII)-specific marker surfactant protein-C, but not positive for the AECI-specific marker aquaporin 5. Our present results suggested that MSCs in combination with EPO could significantly attenuate lung injury in a neonatal mouse model of BPD. The mechanism may be by the indirect promotion of angiogenesis, which may involve the SDF-1/CXCR4 axis.

Keywords: BPD; EPO; MSCs; SDF-1/CXCR4; angiogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Apoptosis / drug effects
  • Bronchopulmonary Dysplasia / metabolism*
  • Cell Movement / drug effects
  • Cell Proliferation / drug effects
  • Chemokine CXCL12 / metabolism
  • Disease Models, Animal
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / metabolism
  • Erythropoietin / pharmacology*
  • Lung / drug effects*
  • Lung / metabolism
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Neovascularization, Physiologic / drug effects*
  • Receptors, CXCR4 / metabolism
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • CXCR4 protein, mouse
  • Chemokine CXCL12
  • Receptors, CXCR4
  • Vascular Endothelial Growth Factor A
  • Erythropoietin