Amorphous Silicon Oxynitrophosphide-Coated Implants Boost Angiogenic Activity of Endothelial Cells

Tissue Eng Part A. 2020 Jan;26(1-2):15-27. doi: 10.1089/ten.TEA.2019.0051. Epub 2019 Sep 3.

Abstract

Lack of osteointegration is a major cause of aseptic loosening and failure of implants used in bone replacement. Implants coated with angiogenic biomaterials can improve osteointegration and potentially reduce these complications. Silicon- and phosphorus-based materials have been shown to upregulate expression of angiogenic factors and improve endothelial cell functions. In the present study, we hypothesize that implants coated with amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP) by using plasma-enhanced chemical vapor deposition (PECVD) technique could enhance human umbilical vein endothelial cell angiogenic properties in vitro. The tested groups were: glass coverslip (GCS), tissue culture plate, SiON, SiONP1 (O: 7.3 at %), and SiONP2 (O: 14.2 at %) implants. The SiONP2 composition demonstrated 3.5-fold more fibronectin deposition than the GCS (p < 0.001). The SiONP2 group also presented a significant improvement in the capillary tubule length and thickness compared with the other groups (p < 0.01). At 24 h, we observed at least a twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2, more evident in the SiONP1 and SiONP2 groups. In conclusion, the studied amorphous silica-coated implants, especially the SiONP2 composition, could enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing. Impact Statement In this study, we report for the first time the significant enhancement of human umbilical vein endothelial cell angiogenic properties (in vitro) by the amorphous silica-based coatings in the form of silicon oxynitrophosphide (SiONP). The SiONP2 demonstrated 3.5-fold more fibronectin deposition than the glass coverslip and presented a significant improvement in the capillary tubule length and thickness. At 24 h, SiONP reported twofold upregulation of vascular endothelial growth factor A, hypoxia-inducible factor-1α, angiopoietin-1, and nesprin-2. The studied amorphous silica-coated implants enhance the endothelial cell angiogenic properties in vitro and may induce faster osteointegration and healing.

Keywords: PECVD; SiONP; VEGF-A; amorphous silica; angiogenesis; angiopoietin-1; endothelial cells.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiopoietin-1 / metabolism
  • Biocompatible Materials / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Cells, Cultured
  • Human Umbilical Vein Endothelial Cells / cytology*
  • Human Umbilical Vein Endothelial Cells / drug effects*
  • Human Umbilical Vein Endothelial Cells / metabolism
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Microfilament Proteins / metabolism
  • Nerve Tissue Proteins / metabolism
  • Reverse Transcriptase Polymerase Chain Reaction
  • Silicon Dioxide / chemistry*
  • Vascular Endothelial Growth Factor A / metabolism

Substances

  • Angiopoietin-1
  • Biocompatible Materials
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Microfilament Proteins
  • Nerve Tissue Proteins
  • SYNE2 protein, human
  • Vascular Endothelial Growth Factor A
  • Silicon Dioxide