Biodegradable, antimicrobial, and semiconducting cellulosic composite was synthesized by in-situ polymerization of polyaniline in the presence of cellulose. The cobalt ferrite nanoparticles (CFO-NPs) were added during the polymerization process to acquire this composite magnetic property. The CFO-NPs were prepared by sol-gel method with average particles size less than 50 nm. The nanocomposites were characterized by Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). In addition, their magnetic, dielectric constant, dielectric loss, and conductivity behaviors were studied. The magnetization (Ms) and conductivity increased up to 3.7 emu/g and 3.5 × 10-3 S/cm, respectively, with increasing CFO-NPs content. The prepared electromagnetic nanocomposite exhibits highly efficient biodegradability and antimicrobial activity against Escherichia coli, Bacillus subtilis, and Candida albicans. The antimicrobial activity increased with increasing CFO-NPs while the biodegradability decreased.
Keywords: Antimicrobial; Cellulose; Cobalt ferrite nanoparticles; Electrical properties; Magnetic properties; Polyaniline.
Copyright © 2019 Elsevier Ltd. All rights reserved.