DDT and its main metabolites (DDTs) are still the residual contaminants in soil. Sequential anaerobic-aerobic cycling has long been approved for enhancing the degradation of DDTs in soil. However, there is a lack of study investigating whether anaerobic-aerobic cycling would enhance the mineralization of DDT, and what a kind of anaerobic-aerobic management regimes would be optimal. To fill these gaps, the fate of 14C-DDT under different flooding-drying cycles was examined in a paddy soil by monitoring its mineralization and bioavailability. The results show the total mineralization of 14C-DDT in 314 days accounted for 1.01%, 1.30%, and 1.41%, individually for the treatments subjected to one, two, and three flooding-drying cycles. By comparison, the treatment subjected to the permanently aerobic phase had only 0.12% cumulative mineralization. Shorter intervals and multiple flooding-drying cycles enhanced the mineralization of 14C-DDT, however, reduced its bioavailability. Therefore, the enhanced mineralization was explained from an abiotic pathway as predicted by the one-electron reduction potential (E1), the Fukui function for nucleophilic attack (f+) and the steps for anaerobic decarboxylation. From a practical view, it is important to investigate how the anaerobic-aerobic interval and frequency would affect the degradation and mineralization of DDT, which is very essential in developing remediation strategies.
Keywords: (14)C-DDT; Anaerobic-aerobic cycling; DFT calculation; Mineralization.
Copyright © 2019 Elsevier B.V. All rights reserved.