Triple negative breast cancers (TNBC) are aggressive malignancies for which chemotherapy is the only treatment option. Many TNBC acquire chemotherapy resistance, notably docetaxel, which has been associated with the overexpression of transcription factors (TFs), such as ENGRAILED1 (EN1). Here, we have developed a tumor delivery system for docetaxel-PGMA-PAA-nanoparticles and interference peptides designed to specifically inhibit EN1 (EN1-iPeps). To promote tumor specific targeting, we functionalized these nanoparticles with EN1-iPeps engineered with RGD sequences. We found that these peptides reduce cell viability and induce apoptosis in TNBC cells with negligible effects on normal cells (EN1-). Moreover, EN1-RGD-iPeps-mediated nanoparticle internalization into breast cancer cells was via integrins and intravenous injection of this nanoformulation increased tumor accumulation. Furthermore, docetaxel nanoparticles functionalized with EN1-RGD-iPeps significantly reduced TNBC growth both in vitro and in vivo without showing toxicity. Our results suggest that this targeted nanoformulation represents a new and safe therapeutic approach for chemoresistant TNBCs.
Keywords: ENGRAILED 1; Peptides; Polymeric nanoparticles; RGD sequences; Triple negative breast cancer.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.