Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework

Philos Trans R Soc Lond B Biol Sci. 2019 Jun 24;374(1775):20180272. doi: 10.1098/rstb.2018.0272.

Abstract

Predicting the impact of natural disasters such as hurricanes on the transmission dynamics of infectious diseases poses significant challenges. In this paper, we put forward a simple modelling framework to investigate the impact of heavy rainfall events (HREs) on mosquito-borne disease transmission in temperate areas of the world such as the southern coastal areas of the USA. In particular, we explore the impact of the timing of HREs relative to the transmission season via analyses that test the sensitivity of HRE-induced epidemics to variation in the effects of rainfall on the dynamics of mosquito breeding capacity, and the intensity and temporal profile of human population displacement patterns. The recent Hurricane Harvey in Texas motivates the simulations reported. Overall, we find that the impact of vector-borne disease transmission is likely to be greater the earlier the HREs occur in the transmission season. Simulations based on data for Hurricane Harvey suggest that the limited impact it had on vector-borne disease transmission was in part because of when it occurred (late August) relative to the local transmission season, and in part because of the mitigating effect of the displacement of people. We also highlight key data gaps related to models of vector-borne disease transmission in the context of natural disasters. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.

Keywords: climate change; heavy rainfall event; mathematical model; mosquito-borne disease; transmission dynamics; vector-borne disease.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Climate
  • Climate Change
  • Culicidae / physiology
  • Cyclonic Storms
  • Female
  • Humans
  • Male
  • Models, Theoretical
  • Rain*
  • Seasons
  • Texas
  • Vector Borne Diseases / epidemiology*
  • Vector Borne Diseases / transmission*

Associated data

  • figshare/10.6084/m9.figshare.c.4440734