Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On-Chip Energy Storage

Adv Mater. 2019 Jun;31(25):e1807450. doi: 10.1002/adma.201807450. Epub 2019 May 6.

Abstract

The development of self-powered electronic systems requires integration of on-chip energy-storage units to interface with various types of energy harvesters, which are intermittent by nature. Most studies have involved on-chip electrochemical microsupercapacitors that have been interfaced with energy harvesters through bulky Si-based rectifiers that are difficult to integrate. This study demonstrates transistor-level integration of electrochemical microsupercapacitors and thin film transistor rectifiers. In this approach, the thin film transistors, thin film rectifiers, and electrochemical microsupercapacitors share the same electrode material for all, which allows for a highly integrated electrochemical on-chip storage solution. The thin film rectifiers are shown to be capable of rectifying AC signal input from either triboelectric nanogenerators or standard function generators. In addition, electrochemical microsupercapacitors exhibit exceptionally slow self-discharge rate (≈18.75 mV h-1 ) and sufficient power to drive various electronic devices. This study opens a new avenue for developing compact on-chip electrochemical micropower units integrated with thin film electronics.

Keywords: RuO2; microsupercapacitors; on-chip energy storage; thin film rectifiers; thin film transistors.