The present study investigated the effects of jasmonic acid (JA), chitosan, and salicylic acid (SA) on the accumulation of phenolic compounds in germinated buckwheat. A total of six phenolics were detected in the buckwheat treated with different concentrations of SA (50, 100, and 150 mg/L), JA (50, 100, and 150 μM), and chitosan (0.01, 0.1, and 0.5%) using high-performance liquid chromatography (HPLC). The treatment with 0.1% chitosan resulted in an accumulation of the highest levels of phenolic compounds as compared with the control and the 0.01 and 0.5% chitosan treatments. The treatment with 150 μM JA enhanced the levels of phenolics in buckwheat sprouts as compared with those observed in the control and the 50 and 100 μM JA-treated sprouts. However, the SA treatment did not affect the production of phenolic compounds. After optimizing the treatment concentrations of elicitors (chitosan and JA), a time-course analysis of the phenolic compounds detected in the germinated buckwheat treated with 0.1% chitosan and 150 μM JA was performed. Buckwheat treated with 0.1% chitosan for 72 h showed higher levels of phenolic compounds than all control samples. Similarly, the germinated buckwheat treated with JA for 48 and 72 h produced higher amounts of phenolic compounds than all control samples. This study elucidates the influence of SA, JA, and chitosan on the production of phenolic compounds and suggests that the treatment with optimal concentrations of chitosan and JA for an optimal time period improved the production of phenolic compounds in germinated buckwheat.
Keywords: chitosan; elicitors; germinated buckwheat; jasmonic acid; phenolic compounds.