Coaxial quantum wells (QWs) are ideal candidates for nanowire (NW) lasers, providing strong carrier confinement and allowing close matching of the cavity mode and gain medium. We report a detailed structural and optical study and the observation of lasing for a mixed group-V GaAsP NW with GaAs QWs. This system offers a number of potential advantages in comparison to previously studied common group-V structures ( e. g., AlGaAs/GaAs) including highly strained binary GaAs QWs, the absence of a lower band gap core region, and deep carrier potential wells. Despite the large lattice mismatch (∼1.7%), it is possible to grow defect-free GaAs coaxial QWs with high optical quality. The large band gap difference results in strong carrier confinement, and the ability to apply a high degree of compressive strain to the GaAs QWs is also expected to be beneficial for laser performance. For a non-fully optimized structure containing three QWs, we achieve low-temperature lasing with a low external (internal) threshold of 20 (0.9) μJ/cm2/pulse. In addition, a very narrow lasing line width of ∼0.15 nm is observed. These results extend the NW laser structure to coaxial III-V-V QWs, which are highly suitable as the platform for NW emitters.
Keywords: III−V−V; carrier collection; carrier confinement; laser; nanowire; quantum well.