Metal concentrations in electronic cigarette aerosol: Effect of open-system and closed-system devices and power settings

Environ Res. 2019 Jul:174:125-134. doi: 10.1016/j.envres.2019.04.003. Epub 2019 Apr 22.

Abstract

Background: Electronic cigarettes (E-cigarettes) generate aerosol containing metal contaminants. Our goals were to quantify aerosol metal concentrations and to compare the effects of power setting and device type (closed-system vs. open-system) on metal release.

Methods: Aerosol samples were collected from two closed-system devices (a cigalike and pod) and two open-system devices (mods). Each open-system device was operated at three different power settings to examine the effect of device power on metal release. Concentrations of 14 metals in e-cigarette aerosol collected via droplet deposition were measured using inductively coupled plasma mass spectroscopy. Aerosol metal concentrations were reported as mass fractions (μg/kg) in the e-liquid.

Results: For open-system device 1 (OD1), median arsenic (As), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), antimony (Sb), tin (Sn), and zinc (Zn) concentrations increased 14, 54, 17, 30, 41, 96, 14, 81, 631, and 7-fold when the device power was increased from low (20 W) to intermediate (40 W) setting. When the power was further increased from intermediate (40 W) to high (80 W) setting, concentrations of As, Cr, Cu, Mn, Ni, and Sb did not change significantly. For open-system device 2 (OD2), Cr and Mn concentrations increased significantly when device power was increased from low (40 W) to intermediate (120 W) setting, and then decreased significantly when power was further increased from intermediate (120 W) to high (200 W) setting. Among the four devices, aerosol metal concentrations were higher for the open-system than the closed-system devices, except for aluminum (Al) and uranium (U). For Cr, median (interquartile range) concentrations (μg/kg) from the open-system devices were 2.51 (1.55, 4.23) and 15.6 (7.88, 54.5) vs. 0.39 (0.05, 0.72) and 0.41 (0.34, 0.57) for the closed-system devices. For Ni, concentrations (μg/kg) from the open-system devices were 793 (508, 1169) and 2148 (851, 3397) vs. 1.32 (0.39, 3.35) and 11.9 (10.7, 22.7) from the closed-system devices. Inhalation of 0% and 100% of samples from OD1, 7.4% and 88.9% from OD2 by typical e-cigarette users would exceed chronic minimum risk levels (MRL) of Mn and Ni, respectively. No MRL exceedance was predicted for the closed-system devices. A large fraction of users of OD1 (100%) and OD2 (77.8%) would be exposed to Ni levels higher than those from reference tobacco cigarette 3R4F.

Conclusions: Our findings suggest that power setting and device type affect metal release from devices to aerosol which would subsequently be inhaled by users. Metal concentrations from open-system devices first increased with device power, and then leveled off for most metals. Open-system devices generate aerosol with higher metal concentrations than closed-system devices. These findings inform tobacco regulatory science, policy makers and health professionals on potential metal health risks associated with e-cigarette use, design and manufacturing.

Keywords: Aerosol; Closed-system; E-cigarettes; Open-system; Toxic metals.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aerosols / analysis*
  • Chromium
  • Electronic Nicotine Delivery Systems*
  • Environmental Monitoring*
  • Metals / analysis*
  • Metals, Heavy
  • Nickel

Substances

  • Aerosols
  • Metals
  • Metals, Heavy
  • Chromium
  • Nickel