Herein, we combined toehold exchange with ligation-free rolling circle amplification (RCA) by programming nucleolytic conversion of hairpin probe into sensors, allowed for both high specific recognition and universal signal amplification for RNA detection. The rational engineered HP ensured highly specific recognition based on toehold exchange and allowed the pre-formed circular template for RCA to be shared for different RNAs detection. Generally, detecting different RNA requires different circular template for signal amplification. In this paper, the circular template for RCA was independent of the sequences of the target, so the signal amplification system was an universal one for different RNAs detection. Taking miRNA let-7d as a model target, this method showed a wide linear range from 1 fM to 1 nM with a detection limit of 0.46 fM and exhibited a remarkable selectivity even in distinguishing homologous miRNAs with 1-nt or 2-nt difference. To evaluate the potential of the method, it was applied to analysis the let-7d concentration in human serum, total RNA, and cell lysates. In conclusion, we believe this method exhibits potential for both specific discrimination and universal signal amplification for RNA analysis in complex matrices.
Keywords: Fluorescence biosensing; Rolling circle amplification; Strand displacement; miRNA detection.
Copyright © 2019 Elsevier B.V. All rights reserved.