Organization of functional modularity in sitting balance response and gait performance after stroke

Clin Biomech (Bristol). 2019 Jul:67:61-69. doi: 10.1016/j.clinbiomech.2019.04.022. Epub 2019 May 3.

Abstract

Background: Recovery of postural adjustment, especially when seated, is important for performing activities of daily living after stroke. However, conventional clinical measures provide little insight into a common strategy for dynamic sitting balance and gait. We aimed to evaluate functional re-organization of posture and ambulatory performance after stroke.

Methods: The subjects of the study included 5 healthy men and 21 post-stroke patients. The spatiotemporal modular organization of ground reaction forces during a balance task in which the leg on the non-affected side was lifted off the ground while seated was quantified by using complex principal component analysis.

Findings: A 3% decrease in the temporal strength of the primary module in post-stroke patients was an independent predictor of gait performance in the hospital setting with high sensitivity and specificity. Tuning of the temporal strength was accompanied by the recovery of sitting and ambulation.

Interpretation: Our findings suggest that evaluation of the modular characteristics of ground reaction forces during a sitting balance task allows us to predict recovery and functional adaptation through daily physical rehabilitation.

Keywords: Gait; Recovery; Sitting balance; Stroke; Synergy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activities of Daily Living
  • Adult
  • Aged
  • Case-Control Studies
  • Female
  • Gait / physiology*
  • Humans
  • Male
  • Middle Aged
  • Postural Balance / physiology*
  • Posture / physiology
  • Sitting Position*
  • Stroke / physiopathology*
  • Stroke Rehabilitation
  • Walking / physiology