Human representation of multimodal distributions as clusters of samples

PLoS Comput Biol. 2019 May 14;15(5):e1007047. doi: 10.1371/journal.pcbi.1007047. eCollection 2019 May.

Abstract

Behavioral and neuroimaging evidence shows that human decisions are sensitive to the statistical regularities (mean, variance, skewness, etc.) of reward distributions. However, it is unclear what representations human observers form to approximate reward distributions, or probability distributions in general. When the possible values of a probability distribution are numerous, it is cognitively costly and perhaps unrealistic to maintain in mind the probability of each possible value. Here we propose a Clusters of Samples (CoS) representation model: The samples of the to-be-represented distribution are classified into a small number of clusters and only the centroids and relative weights of the clusters are retained for future use. We tested the behavioral relevance of CoS in four experiments. On each trial, human subjects reported the mean and mode of a sequentially presented multimodal distribution of spatial positions or orientations. By varying the global and local features of the distributions, we observed systematic errors in the reported mean and mode. We found that our CoS representation of probability distributions outperformed alternative models in accounting for subjects' response patterns. The ostensible influence of positive/negative skewness on the over/under estimation of the reported mean, analogous to the "skewness preference" phenomenon in decisions, could be well explained by models based on CoS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cluster Analysis
  • Cognition / physiology
  • Computational Biology
  • Decision Making / physiology*
  • Decision Theory
  • Female
  • Humans
  • Male
  • Models, Psychological*
  • Models, Statistical
  • Photic Stimulation
  • Probability
  • Reward*
  • Uncertainty
  • Young Adult

Grants and funding

HZ was supported by National Natural Science Foundation of China (http://www.nsfc.gov.cn/) grants 31571117 and 31871101, and funding from Peking-Tsinghua Center for Life Sciences (http://cls.pku.edu.cn/). JL was supported by National Natural Science Foundation of China grants 31421003 and 31871140 and Ministry of Science and Technology of the People’s Republic of China (http://www.most.gov.cn/) grant 2015CB559200. Part of the analysis was performed on the High Performance Computing Platform of the Center for Life Sciences at Peking University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.