Rapid DNA-genotyping system targeting ten loci for resistance to blast disease in rice

Breed Sci. 2019 Mar;69(1):68-83. doi: 10.1270/jsbbs.18143. Epub 2019 Feb 15.

Abstract

The fungal pathogen Pyricularia oryzae causes blast, a severe disease of rice (Oryza sativa L.). Improving blast resistance is important in rice breeding programs. Inoculation tests have been used to select for resistance genotypes, with DNA marker-based selection becoming an efficient alternative. No comprehensive DNA marker system for race-specific resistance alleles in the Japanese rice breeding program has been developed because some loci contain multiple resistance alleles. Here, we used the Fluidigm SNP genotyping platform to determine a set of 96 single nucleotide polymorphism (SNP) markers for 10 loci with race-specific resistance. The markers were then used to evaluate the presence or absence of 24 resistance alleles in 369 cultivars; results were 93.5% consistent with reported inoculation test-based genotypes in japonica varieties. The evaluation system was successfully applied to high-yield varieties with indica genetic backgrounds. The system includes polymorphisms that distinguish the resistant alleles at the tightly linked Pita and Pita-2 loci, thereby confirming that all the tested cultivars with Pita-2 allele carry Pita allele. We also developed and validated insertion/deletion (InDel) markers for ten resistance loci. Combining SNP and InDel markers is an accurate and efficient strategy for selection for race-specific resistance to blast in breeding programs.

Keywords: DNA marker; Oryza sativa L.; SNP; blast resistance; marker-assisted selection; race-specific resistance.