Purpose: Asymmetric nystagmus can be an important presenting sign of optic pathway gliomas in young children. We investigated the causes of asymmetric nystagmus in children with chiasmal or suprasellar optic pathway gliomas compared with children with similar optic pathway gliomas and stable gaze.
Methods: Longitudinal magnetic resonance imaging before and after treatment, age-corrected visual acuity, ocular examinations, video-oculography, visual evoked potentials, and retinal nerve fiber layer thickness were retrospectively reviewed.
Results: Twenty-two children were included (eight with asymmetric nystagmus and 14 with stable gaze). Subjects with asymmetric nystagmus presented at a younger age than those with stable gaze (2.0 vs 5.6 years; P < 0.001). None had neurofibromatosis type 1. Visual acuity, visual evoked potentials, nerve fiber layer, severity of optic atrophy, hydrocephalus, tumor volume, and tumor locations did not differ between those with asymmetric nystagmus and stable gaze. Asymmetric nystagmus resolved shortly after treatment, even though the average visual acuity did not improve. Changes in visual acuity or tumor volume were not different between those with asymmetric nystagmus and stable gaze after treatment. Eye movement recording from two subjects with asymmetric nystagmus revealed an asymmetric pendular-oscillation with vertical components. One subject with stable gaze developed asymmetric nystagmus with tumor growth into the rostral midbrain and associated unilateral vision loss. Another subject with tumor growth into the rostral midbrain acquired vertical saccade dysmetria.
Conclusion: We hypothesize that asymmetric nystagmus associated with optic pathway gliomas is caused by subclinical abnormalities to retinal axons that connect to gaze holding centers in the rostral midbrain. Direct compression of the rostral midbrain was a possible factor to asymmetric nystagmus in some subjects. However, many subjects with stable gaze also show midbrain compression.
Keywords: Asymmetric nystagmus; Brain imaging; Brain tumor; Glioma; Vision.
Copyright © 2019 Elsevier Inc. All rights reserved.