Cannabinoid Attenuation of Intestinal Inflammation in Chronic SIV-Infected Rhesus Macaques Involves T Cell Modulation and Differential Expression of Micro-RNAs and Pro-inflammatory Genes

Front Immunol. 2019 Apr 30:10:914. doi: 10.3389/fimmu.2019.00914. eCollection 2019.

Abstract

Cannabis use is frequent in HIV-infected individuals for its appetite stimulation and anti-inflammatory effects. To identify the underlying molecular mechanisms associated with these effects, we simultaneously profiled micro-RNA (miRNA) and mRNA expression in the colon of chronically simian immunodeficiency virus (SIV)-infected rhesus macaques administered either vehicle (VEH/SIV; n = 9) or Δ9-tetrahydrocannabinol (Δ9-THC; THC/SIV; n = 8). Pro-inflammatory miR-130a, miR-222, and miR-29b, lipopolysaccharide-responsive miR-146b-5p and SIV-induced miR-190b were significantly upregulated in VEH/SIV rhesus macaques. Compared to VEH/SIV rhesus macaques, 10 miRNAs were significantly upregulated in THC/SIV rhesus macaques, among which miR-204 was confirmed to directly target MMP8, an extracellular matrix-degrading collagenase that was significantly downregulated in THC/SIV rhesus macaques. Moreover, THC/SIV rhesus macaques failed to upregulate pro-inflammatory miR-21, miR-141 and miR-222, and alpha/beta-defensins, suggesting attenuated intestinal inflammation. Further, THC/SIV rhesus macaques showed higher expression of tight junction proteins (occludin, claudin-3), anti-inflammatory MUC13, keratin-8 (stress protection), PROM1 (epithelial proliferation), and anti-HIV CCL5. Gomori one-step trichrome staining detected significant collagen deposition (fibrosis) in the paracortex and B cell follicular zones of axillary lymph nodes from all VEH/SIV but not in THC/SIV rhesus macaques, thus demonstrating the ability of Δ9-THC to prevent lymph node fibrosis, a serious irreversible consequence of HIV induced chronic inflammation. Furthermore, using flow cytometry, we showed that Δ9-THC suppressed intestinal T cell proliferation/activation (Ki67/HLA-DR) and PD-1 expression and increased the percentages of anti-inflammatory CD163+ macrophages. Finally, while Δ9-THC did not affect the levels of CD4+ T cells, it significantly reduced absolute CD8+ T cell numbers in peripheral blood at 14 and 150 days post-SIV infection. These translational findings strongly support a role for differential miRNA/gene induction and T cell activation in Δ9-THC-mediated suppression of intestinal inflammation in HIV/SIV and potentially other chronic inflammatory diseases of the intestine.

Keywords: SIV; THC; intestinal inflammation; micro-RNA; rhesus macaque.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology
  • CD4-Positive T-Lymphocytes / pathology
  • CD8-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / pathology
  • Dronabinol / pharmacology*
  • Gene Expression Regulation / drug effects*
  • Gene Expression Regulation / immunology
  • Inflammation / drug therapy
  • Inflammation / immunology
  • Inflammation / pathology
  • Intestinal Mucosa / immunology*
  • Intestinal Mucosa / pathology
  • Macaca mulatta
  • Male
  • MicroRNAs / immunology*
  • Simian Acquired Immunodeficiency Syndrome* / drug therapy
  • Simian Acquired Immunodeficiency Syndrome* / immunology
  • Simian Acquired Immunodeficiency Syndrome* / pathology
  • Simian Immunodeficiency Virus / immunology*

Substances

  • MicroRNAs
  • Dronabinol