Helicobacter suis has been associated with development of gastric ulcers in the non-glandular part of the porcine stomach, possibly by affecting gastric acid secretion and altering the gastric microbiota. Fusobacterium gastrosuis is highly abundant in the gastric microbiota of H. suis-infected pigs and it was hypothesized that this micro-organism could play a role in the development of gastric ulceration. The aim of this study was to obtain further insights in the influence of a naturally acquired H. suis infection on the microbiota of the non-glandular part of the porcine stomach and in the pathogenic potential of F. gastrosuis. Infection with H. suis influenced the relative abundance of several taxa at phylum, family, genus and species level. H. suis-infected pigs showed a significantly higher colonization rate of F. gastrosuis in the non-glandular gastric region compared to non-infected pigs. In vitro, viable F. gastrosuis strains as well as their lysate induced death of both gastric and oesophageal epithelial cell lines. These gastric cell death inducing bacterial components were heat-labile. Genomic analysis revealed that genes are present in the F. gastrosuis genome with sequence similarity to genes described in other Fusobacterium spp. that encode factors involved in adhesion, invasion and induction of cell death as well as in immune evasion. We hypothesize that, in a gastric environment altered by H. suis, colonization and invasion of the non-glandular porcine stomach region and production of epithelial cell death inducing metabolites by F. gastrosuis, play a role in gastric ulceration.