In this work, several normal, oil-in-water (o/w) microemulsions (MEs) were prepared using peppermint essential oil, jojoba oil, trans-anethole, and vitamin E as oil phases to test their capacity to load paclitaxel (PTX). Initially, pseudo-ternary partial phase diagrams were constructed in order to find the normal microemulsion region using d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-1000) as surfactant and isobutanol (iso-BuOH) as co-surfactant. Selected ME formulations were loaded with PTX reaching concentrations of 0.6 mg mL-1 for the peppermint oil and trans-anethole MEs, while for the vitamin E and jojoba oil MEs, the maximum concentration was 0.3 mg mL-1. The PTX-loaded MEs were stable according to the results of heating-cooling cycles and mechanical force (centrifugation) test. Particularly, drug release profile for the PTX-loaded peppermint oil ME (MEPP) showed that ∼ 90% of drug was released in the first 48 h. Also, MEPP formulation showed 70% and 90% viability reduction on human cervical cancer (HeLa) cells after 24 and 48 h of exposure, respectively. In addition, HeLa cell apoptosis was confirmed by measuring caspase activity and DNA fragmentation. Results showed that the MEPP sample presented a major pro-apoptotic capability by comparing with the unloaded PTX ME sample.
Keywords: cytotoxicity; drug delivery; microemulsions; nanodevices; paclitaxel; peppermint oil.