The construction of complex gene-regulatory networks requires both inhibitory and upregulatory modules. However, the vast majority of RNA-based regulatory "parts" are inhibitory. Using a synthetic biology approach combined with SHAPE-seq, we explored the regulatory effect of RNA-binding protein (RBP)-RNA interactions in bacterial 5' UTRs. By positioning a library of RNA hairpins upstream of a reporter gene and co-expressing them with the matching RBP, we observed a set of regulatory responses, including translational stimulation, translational repression, and cooperative behavior. Our combined approach revealed three distinct states in vivo: in the absence of RBPs, the RNA molecules can be found in either a molten state that is amenable to translation or a structured phase that inhibits translation. In the presence of RBPs, the RNA molecules are in a semi-structured phase with partial translational capacity. Our work provides new insight into RBP-based regulation and a blueprint for designing complete gene-regulatory circuits at the post-transcriptional level.
Keywords: 5′ UTR; RNA phases; RNA structural cooperativity; SHAPE-seq; phage coat proteins; protein-sensing riboswitches; synthetic biology; synthetic post-transcriptional regulation; translational repression; translational stimulation.
Copyright © 2019 Elsevier Inc. All rights reserved.