Alterations of structural and functional connectivity in profound sensorineural hearing loss infants within an early sensitive period: A combined DTI and fMRI study

Dev Cogn Neurosci. 2019 Aug:38:100654. doi: 10.1016/j.dcn.2019.100654. Epub 2019 May 8.

Abstract

Due to heightened level of neuroplasticity, there is a sensitive period (2-4 years after birth) that exists for optimal central auditory development. Using diffusion tensor imaging combined with resting-state functional connectivity (rsFC) analysis, this study directly investigates the structural connectivity alterations of the whole brain white matter (WM) and the functional reorganization of the auditory network in infants with sensorineural hearing loss (SNHL) during the early sensitive period. 46 bilateral profound SNHL infants prior to cochlear implantation (mean age, 17.59 months) and 33 healthy controls (mean age, 18.55 months) were included in the analysis. Compared with controls, SNHL infants showed widespread WM alterations, including bilateral superior longitudinal fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, right corticospinal tract, posterior thalamic radiation and left uncinate fasciculus. Moreover, SNHL infants demonstrated increased rsFC between left/right primary auditory cortex seeds and right insula and superior temporal gyrus. In conclusion, this study suggests that SNHL in the early sensitive period is associated with diffuse WM alterations that mainly affect the auditory and language pathways. Furthermore, increased rsFC in areas mainly associated with auditory and language networks may potentially reflect reorganization and compensatory activation in response to auditory deprivation during the early sensitive period.

Keywords: Diffusion tensor imaging; Functional connectivity; Resting-state functional magnetic resonance imaging; Sensitive period; Sensorineural hearing loss.

MeSH terms

  • Auditory Cortex / diagnostic imaging*
  • Auditory Cortex / physiopathology
  • Child, Preschool
  • Diffusion Tensor Imaging / methods*
  • Female
  • Hearing Loss, Sensorineural / diagnostic imaging*
  • Hearing Loss, Sensorineural / physiopathology
  • Humans
  • Infant
  • Magnetic Resonance Imaging / methods*
  • Male
  • Nerve Net / diagnostic imaging*
  • Nerve Net / physiopathology
  • Neuronal Plasticity / physiology