The degradation of pharmaceuticals and personal care products (PPCPs) by using solar photolysis in the presence of free available chlorine (FAC) was investigated in simulated drinking water. The combination of free available chlorine and sunlight irradiation dramatically accelerated the degradation of all the contaminants tested through the generation of hydroxyl radicals, reactive chlorine species (RCS) and ozone. Contaminants containing electron-donating moieties degraded quickly and were preferentially degraded by RCS and/or HO oxidation. Primidone, ibuprofen and atrazine, which contain electron-withdrawing moieties, were mainly degraded by HO. Trace amounts of O3 contributed greatly to carbamazepine's degradation. Degradation of PPCPs was accelerated in oxygenated solutions. Increasing chlorine concentrations barely enhanced removal of PPCPs bearing electron-withdrawing moieties. Higher pH generally decreased the degradation rate constants along with reduced levels of HO and Cl, but diclofenac, gemfibrozil, caffeine and carbamazepine had peak degradation rate constants at pH 7-8. The cytotoxicity using Chinese hamster ovary (CHO) cell did not show significant enhancement in solar/FAC treated water. Combining chlorination with sunlight may provide a simple and energy-efficient approach for improving the removal of organic contaminants during water treatment.
Keywords: Advanced oxidation; Chlorine photolysis; Pharmaceuticals and personal care products (PPCPs); Solar/free available chlorine; Water treatment.
Copyright © 2019 Elsevier B.V. All rights reserved.