The question of whether ultrasound point shear wave elastography can differentiate renal cell carcinoma (RCC) from angiomyolipoma (AML) is controversial. This study prospectively enrolled 51 patients with 52 renal tumors (42 RCCs, 10 AMLs). We obtained 10 measurements of shear wave velocity (SWV) in the renal tumor, cortex and medulla. Median SWV was first used to classify RCC versus AML. Next, the prediction accuracy of 4 machine learning algorithms-logistic regression, naïve Bayes, quadratic discriminant analysis and support vector machines (SVMs)-was evaluated, using statistical inputs from the tumor, cortex and combined statistical inputs from tumor, cortex and medulla. After leave-one-out cross validation, models were evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). Tumor median SWV performed poorly (AUC = 0.62; p = 0.23). Except logistic regression, all machine learning algorithms reached statistical significance using combined statistical inputs (AUC = 0.78-0.98; p < 7.1 × 10-3). SVMs demonstrated 94% accuracy (AUC = 0.98; p = 3.13 × 10-6) and clearly outperformed median SWV in differentiating RCC from AML (p = 2.8 × 10-4).
Keywords: Angiomyolipoma; Machine learning; Point shear wave elastography; Renal cell carcinoma; Ultrasound.
Copyright © 2019 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.