The present study demonstrates the development of polyphenol oxidase (PPO) biosensor for the detection of catechol using strontium copper oxide (SrCuO2) and polypyrrole nanotubes (PPyNT) matrix. The SrCuO2 micro-seeds, a perovskite compound, are synthesized by co-precipitation under pH 8.0. The as-synthesized micro-seeds are characterized by scanning electron microscopy (SEM), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction spectroscopy (XRD). The proposed sensor is fabricated on pencil graphite (P-Gr) by successive deposition of PPyNT, SrCuO2, and PPO enzyme. The developed PPO/SrCuO2/PPyNT/P-Gr sensor is characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) techniques. The PPO/SrCuO2/PPyNT/P-Gr displayed excellent electrocatalytic activity towards the oxidation and detection of catechol. The as-developed sensor showed sensitive response ascribing to limit of detection (LOD) of 0.15 μM and sensitivity of 15.60 μA μM-1 cm-2. The fabricated sensor exhibited excellent repeatability and longer shelf life. The proposed biosensor finds its application within the broad linear range of 1-50 μM. Real sample analysis of mineral water, tap water, and domestic wastewater using developed sensor showed acceptable recovery. Hence, the biosensor endeavors its application in environmental monitoring and protection.
Keywords: Biosensor; Catechol; Pencil graphite electrode; Polyphenol oxidase; Strontium copper oxide.