Calcification is a regulated physiological process occurring in bones and teeth. However, calcification is commonly found in soft tissues in association with aging and in a variety of diseases. Over the last two decades, it has emerged that calcification occurring in diseased arteries is not simply an inevitable build-up of insoluble precipitates of calcium phosphate. In some cases, it is an active process in which transcription factors drive conversion of vascular cells to an osteoblast or chondrocyte-like phenotype, with the subsequent production of mineralizing "matrix vesicles." Early studies of bone and cartilage calcification suggested roles for cellular calcium signaling in several of the processes involved in the regulation of bone calcification. Similarly, calcium signaling has recently been highlighted as an important component in the mechanisms regulating pathological calcification. The emerging hypothesis is that ectopic/pathological calcification occurs in tissues in which there is an imbalance in the regulatory mechanisms that actively prevent calcification. This review highlights the various ways that calcium signaling regulates tissue calcification, with a particular focus on pathological vascular calcification.
Copyright © 2019 Cold Spring Harbor Laboratory Press; all rights reserved.