Spindle checkpoint silencing at kinetochores with submaximal microtubule occupancy

J Cell Sci. 2019 Jun 17;132(12):jcs231589. doi: 10.1242/jcs.231589.

Abstract

The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by monitoring kinetochore-microtubule interactions. SAC proteins are shed from kinetochores once stable attachments are achieved. Human kinetochores consist of hundreds of SAC protein recruitment modules and bind up to 20 microtubules, raising the question of how the SAC responds to intermediate attachment states. We show that one protein module ('RZZS-MAD1-MAD2') of the SAC is removed from kinetochores at low microtubule occupancy and remains absent at higher occupancies, while another module ('BUB1-BUBR1') is retained at substantial levels irrespective of attachment states. These behaviours reflect different silencing mechanisms: while BUB1 displacement is almost fully dependent on MPS1 inactivation, MAD1 (also known as MAD1L1) displacement is not. Artificially tuning the affinity of kinetochores for microtubules further shows that ∼50% occupancy is sufficient to shed MAD2 and silence the SAC. Kinetochores thus respond as a single unit to shut down SAC signalling at submaximal occupancy states, but retain one SAC module. This may ensure continued SAC silencing on kinetochores with fluctuating occupancy states while maintaining the ability for fast SAC re-activation.

Keywords: Chromosome segregation; Kinetochore; Microtubules; Mitosis; Spindle assembly checkpoint.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Cycle Checkpoints / physiology*
  • Cell Cycle Proteins / metabolism
  • Chromosome Segregation / physiology
  • Humans
  • Kinetochores / metabolism*
  • Microtubules / metabolism*
  • Mitosis / physiology
  • Protein Serine-Threonine Kinases / metabolism
  • Signal Transduction / physiology
  • Spindle Apparatus / metabolism*

Substances

  • Cell Cycle Proteins
  • Protein Serine-Threonine Kinases