The ultrasonication-triggered interfacial assembly approach was developed to synthesize magnetic Janus amphiphilic nanoparticles (MJANPs) for cancer theranostic applications, where the biocompatible octadecylamine is used as a molecular linker to mediate the interactions between hydrophobic and hydrophilic nanoparticles across the oil-water interface. The obtained Co cluster-embedded Fe3O4 nanoparticles-graphene oxide (CCIO-GO) MJANPs exhibited superior magnetic heating efficiency and transverse relaxivity, 64 and 4 times higher than that of commercial superparamagnetic iron oxides, respectively. The methodology has been applicable to nanoparticles of various dimensions (5-100 nm), morphologies (sphere, ring, disk, and rod), and composition (metal oxides, noble metal and semiconductor compounds, etc.), thereby greatly enriching the array of MJANPs. In vivo theranostic applications using the tumor-bearing mice model further demonstrated the effectiveness of these MJANPs in high-resolution multimodality imaging and high-efficiency cancer therapeutics. The ubiquitous assembly approach developed in the current study pave the way for on-demand design of high-performance Janus amphiphilic nanoparticles for various clinical diagnoses and therapeutic applications.
Keywords: Magnetic Janus amphiphilic nanoparticles; cancer theranostic applications; interfacial assembly; ultrasonication-triggered.