Background: It is important to modulate the expression of glucocorticoids receptor (GR) in tress and maintain the immunity homeostasis in sepsis process. Rhubarb have been shown to have potential effects on anti-inflammatory and immune modulation. The present study was designed to investigate the effects of rhubarb on the expression of GR and cellular immunity in burn-induced septic rats.
Methods: Sixty-six healthy male Sprague Dawley (SD) rats were randomized into sepsis group (n = 24), rhubarb group (n = 24), and control group (n = 18); each group were further randomized into 12, 24, and 72 h subgroups according to different time points. During onset of the sepsis model, the rats in the rhubarb group were infused with 50 mg/kg rhubarb powder dissolved into 1 mL saline through gastric tube, while sepsis and control groups were treated with saline. The binding activity of GR in liver cytosol and binding capacity of GR in peripheral blood leucocyte were analyzed by radiation ligands binding assay. The percentages of CD4,CD8,CD4CD25T cells, CD19B cells as well as natural killer (NK) cells in the lymphocytes in peripheral blood were detected by flow cytometer. For assessing the differences among groups, one-way analysis of variance (ANOVA) with Scheffe multi-comparison techniques were employed. Comparisons between time-based measurements within each group were performed with ANOVA repeated measurement.
Results: The binding activity of GR in liver cytosol and binding capacity of GR in peripheral blood leucocyte were significantly decreased in a time-dependent manner in sepsis group (t = 23.045, P < 0.01; t = 24.395, P < 0.05, respectively), which were increased in a time-dependent manner after rhubarb administration (t = 19.965, P < 0.05; t = 17.140, P < 0.05, respectively). Twelve hours after sepsis, the percentages of CD4 T cells, CD4/CD25 T cell ratio, and CD19 B cells in the peripheral blood were significantly increased in the sepsis group (t = -3.395, P < 0.01; t = 2.568, P < 0.05; t = 2.993, P < 0.05, vs. control mice, respectively). However, the percentage of NK cells in the peripheral blood were significantly decreased in the sepsis group (t = -2.022, P < 0.05, vs. control mice). Twelve hours after sepsis, the percentage of CD8 T cells were significantly decreased in the peripheral blood in the sepsis group (t = -2.191, P < 0.05, vs. control mice) and were significantly increased in the rhubarb group (t = 2.953, P < 0.05, vs. sepsis mice). Seventy-two hours after sepsis, the ratio of CD4/CD25 T cell in peripheral blood were significantly increased in the sepsis group (t = 2.508, P < 0.05, vs. control mice) while were significantly decreased in the rhubarb group (t = 3.378, P < 0.05, vs. control mice). Furthermore, the percentages of CD19 B cell in peripheral blood were significantly decreased at 72 h in the rhubarb group (t = 2.041, P < 0.05 vs. sepsis group).
Conclusions: Rhubarb might play potential anti-inflammatory and immunomodulatory roles in the sepsis processes.