Dual Cocatalysts in TiO2 Photocatalysis

Adv Mater. 2019 Jul;31(30):e1807660. doi: 10.1002/adma.201807660. Epub 2019 May 30.

Abstract

Semiconductor photocatalysis is recognized as a promising strategy to simultaneously address energy needs and environmental pollution. Titanium dioxide (TiO2 ) has been investigated for such applications due to its low cost, nontoxicity, and high chemical stability. However, pristine TiO2 still suffers from low utilization of visible light and high photogenerated-charge-carrier recombination rate. Recently, TiO2 photocatalysts modified by dual cocatalysts with different functions have attracted much attention due to the extended light absorption, enhanced reactant adsorption, and promoted charge-carrier-separation efficiency granted by various cocatalysts. Recent progress on the component and structural design of dual cocatalysts in TiO2 photocatalysts is summarized. Depending on their components, dual cocatalysts decorated on TiO2 photocatalysts can be divided into the following categories: bimetallic cocatalysts, metal-metal oxide/sulfide cocatalysts, metal-graphene cocatalysts, and metal oxide/sulfide-graphene cocatalysts. Depending on their architecture, they can be categorized into randomly deposited binary cocatalysts, facet-dependent selective-deposition binary cocatalysts, and core-shell structural binary cocatalysts. Concluding perspectives on the challenges and opportunities for the further exploration of dual cocatalyst-modified TiO2 photocatalysts are presented.

Keywords: TiO2; core-shell structures; dual cocatalysts; facet-dependent deposition; photocatalysis.

Publication types

  • Review