Alternative splicing (AS) is a process that enables the generation of multiple protein isoforms with different biological properties from a single mRNA. Cancer cells often use the maneuverability conferred by AS to produce proteins that contribute to growth and survival. In our previous studies, we identified that amiloride modulates AS in cancer cells. However, the effective concentration of amiloride required to modulate AS is too high for use in cancer treatment. In this study, we used computational algorithms to screen potential amiloride derivatives for their ability to regulate AS in cancer cells. We found that 3,5-diamino-6-chloro-N-(N-(2,6-dichlorobenzoyl)carbamimidoyl)pyrazine-2-carboxamide (BS008) can regulate AS of apoptotic gene transcripts, including HIPK3, SMAC, and BCL-X, at a lower concentration than amiloride. This splicing regulation involved various splicing factors, and it was accompanied by a change in the phosphorylation state of serine/arginine-rich proteins (SR proteins). RNA sequencing was performed to reveal that AS of many other apoptotic gene transcripts, such as AATF, ATM, AIFM1, NFKB1, and API5, was also modulated by BS008. In vivo experiments further indicated that treatment of tumor-bearing mice with BS008 resulted in a marked decrease in tumor size. BS008 also had inhibitory effects in vitro, either alone or in a synergistic combination with the cytotoxic chemotherapeutic agents sorafenib and nilotinib. BS008 enabled sorafenib dose reduction without compromising antitumor activity. These findings suggest that BS008 may possess therapeutic potential for cancer treatment.
Keywords: alternative splicing; amiloride; apoptosis; cancer; sorafenib.
© 2019 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.