Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma

Cell. 2019 Jun 13;177(7):1842-1857.e21. doi: 10.1016/j.cell.2019.05.013. Epub 2019 May 30.

Abstract

Mutational processes giving rise to lung adenocarcinomas (LADCs) in non-smokers remain elusive. We analyzed 138 LADC whole genomes, including 83 cases with minimal contribution of smoking-associated mutational signature. Genomic rearrangements were not correlated with smoking-associated mutations and frequently served as driver events of smoking-signature-low LADCs. Complex genomic rearrangements, including chromothripsis and chromoplexy, generated 74% of known fusion oncogenes, including EML4-ALK, CD74-ROS1, and KIF5B-RET. Unlike other collateral rearrangements, these fusion-oncogene-associated rearrangements were frequently copy-number-balanced, representing a genomic signature of early oncogenesis. Analysis of mutation timing revealed that fusions and point mutations of canonical oncogenes were often acquired in the early decades of life. During a long latency, cancer-related genes were disrupted or amplified by complex rearrangements. The genomic landscape was different between subgroups-EGFR-mutant LADCs had frequent whole-genome duplications with p53 mutations, whereas fusion-oncogene-driven LADCs had frequent SETD2 mutations. Our study highlights LADC oncogenesis driven by endogenous mutational processes.

Keywords: SETD2; balanced rearrangement; chromoplexy; chromothripsis; complex genomic rearrangement; fusion oncogene; lung adenocarcinoma; p53; tumor initiation; whole-genome duplication.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenocarcinoma of Lung* / genetics
  • Adenocarcinoma of Lung* / metabolism
  • Adenocarcinoma of Lung* / pathology
  • Female
  • Gene Rearrangement*
  • Humans
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Lung Neoplasms* / pathology
  • Male
  • Mutation*
  • Oncogene Proteins, Fusion* / genetics
  • Oncogene Proteins, Fusion* / metabolism

Substances

  • Oncogene Proteins, Fusion