Bond Strength of Methacrylate-based Blends Containing Elastomeric Monomers and Alternative Initiators after Thermomechanical Cycling

J Adhes Dent. 2019;21(3):281-286. doi: 10.3290/j.jad.a42549.

Abstract

Purpose: To evaluate the bond strength to dentin produced by experimental adhesives formulated with an elastomeric methacrylate monomer (EMM) and an alternative initiator system based on a Thioxanthone derivative (QTX).

Materials and methods: A self-etching primer was used. For the bonding resin, a model adhesive (G1) was formulated containing bis-GMA/TEG-DMA/HEMA (co-monomeric blend) + CQ/EDAB (initiator system). The other groups were formulated by adding to this formulation: EMM only (G2), QTX (G3), or EMM and QTX (G4). Clearfil SE Bond was used as the commercial control group. Fifty bovine teeth (n = 5) were restored with each one of the five adhesives. After restorative procedures, half of the specimens were stored in distilled water at 37°C for 24 h. The other half was fixed on a metal stub and subjected to 200,000 mechanical (50 N loading at 2 Hz frequency) and 1000 thermal cycles (5°C and 55°C). Afterwards, specimens were serially sectioned into beams and tested in tension until fracture. Bond strengths were statistically analyzed by two-way ANOVA and Tukey's test (α = 5%).

Results: After 24 h, significantly higher µTBS was observed for the formulation containing EMM and QTX (G4) when compared to Clearfil SE Bond (p < 0.05). No significant differences in µTBS were detected among the experimental groups after 24 h (p>0.05). After thermomechanical cycling, no significant differences were observed among groups.

Conclusion: The addition of EMM and QTX can be considered as possible alternative in dental adhesive formulations.

Keywords: adhesives; microtensile bond strength; thermomechanical load cycling; thioxanthone.

MeSH terms

  • Animals
  • Bisphenol A-Glycidyl Methacrylate
  • Cattle
  • Composite Resins
  • Dental Bonding*
  • Dental Cements
  • Dentin
  • Dentin-Bonding Agents
  • Materials Testing
  • Methacrylates
  • Resin Cements
  • Tensile Strength

Substances

  • Composite Resins
  • Dental Cements
  • Dentin-Bonding Agents
  • Methacrylates
  • Resin Cements
  • Bisphenol A-Glycidyl Methacrylate