Extended field-of-view ultrasound (US EFOV) imaging is a technique used extensively in the clinical field to attain interpretable panorama of anatomy; 2.5-D US EFOV has recently been proposed for spine imaging. In the original 2.5-D US EFOV, it makes use of a six degrees-of-freedom positional sensor attached to the US probe to record the corresponding position of each B-scan. By combining the positional information and the B-scan images, the 2.5-D EFOV can reconstruct a panorama on a curved image plane when the scanning trajectory of the US probe is curved. In this paper, an improved method based on the Bezier interpolation is proposed to better reconstruct 2.5-D US EFOV imaging, producing the panoramas with smoother texture and higher quality. To make it more applicable for scoliosis patients, we designed a novel method called double-sweep 2.5-D EFOV to better image the spinal tissues and easily compute the Cobb angle. In vitro and in vivo experiments demonstrated that the 2.5-D EFOV images obtained by the proposed method can present anatomical structures of the scanning region accurately.