Role of mPFC and nucleus accumbens circuitry in modulation of a nicotine plus alcohol compound drug state

Addict Biol. 2020 Jul;25(4):e12782. doi: 10.1111/adb.12782. Epub 2019 Jun 7.

Abstract

Combined use of nicotine and alcohol constitute a significant public health risk. An important aspect of drug use and dependence are the various cues, both external (contextual) and internal (interoceptive) that influence drug-seeking and drug-taking behavior. The present experiments employed the use of Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) and complementary Pavlovian drug discrimination procedures (feature-positive and feature-negative training conditions) in order to examine whether medial prefrontal cortex (prelimbic; mPFC-PL) projections to the nucleus accumbens core (AcbC) modulate sensitivity to a nicotine + alcohol (N + A) interoceptive cue. First, we show neuronal activation in mPFC-PL and AcbC following treatment with N + A. Next, we demonstrate that chemogenetic silencing of projections from mPFC-PL to nucleus accumbens core decrease sensitivity to the N + A interoceptive cue, while enhancing sensitivity to the individual components, suggesting an important role for this specific projection. Furthermore, we demonstrate that clozapine-N-oxide (CNO), the ligand used to activate the DREADDs, had no effect in parallel mCherry controls. These findings contribute important information regarding our understanding of the cortical-striatal circuitry that regulates sensitivity to the interoceptive effects of a compound N + A cue.

Keywords: addiction; chemogenetic; drug-discrimination; interoception; poly-drug.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Central Nervous System Depressants / pharmacology*
  • Conditioning, Classical
  • Cues
  • Discrimination Learning
  • Drug-Seeking Behavior / drug effects
  • Drug-Seeking Behavior / physiology*
  • Ethanol / pharmacology*
  • Interoception
  • Male
  • Neural Pathways / physiology
  • Nicotine / pharmacology*
  • Nicotinic Agonists / pharmacology*
  • Nucleus Accumbens / drug effects
  • Nucleus Accumbens / physiology*
  • Prefrontal Cortex / drug effects
  • Prefrontal Cortex / physiology*
  • Rats

Substances

  • Central Nervous System Depressants
  • Nicotinic Agonists
  • Ethanol
  • Nicotine